16,577 research outputs found

    A Reverse-Shock Model for the Early Afterglow of GRB 050525A

    Full text link
    The prompt localization of gamma-ray burst (GRB) 050525A by {\em Swift} allowed the rapid follow-up of the afterglow. The observations revealed that the optical afterglow had a major rebrightening starting at ∼0.01\sim 0.01 days and ending at ∼0.03\sim 0.03 days, which was followed by an initial power-law decay. Here we show that this early emission feature can be interpreted as the reverse shock emission superposed by the forward shock emission in an interstellar medium environment. By fitting the observed data, we further constrain some parameters of the standard fireball-shock model: the initial Lorentz factor of the ejecta γ0>120\gamma_0>120, the magnetic energy fraction ϵB>4×10−6\epsilon_B>4\times10^{-6}, and the medium density n<2cm−3n<2 {\rm cm^{-3}}. These limits are consistent with those from the other very-early optical afterglows observed so far. In principle, a wind environment for GRB 050525A is disfavored.Comment: 11 pages, 1 figure, accepted for publication in Ap

    Power load forecasting

    Get PDF
    For the electric power factory, the power load forecasting problem, including load forecasting and consumption predicting, is crucial to work planning. According to the predicting time, it can be divided into long-term forecasting, mid-term forecasting, short-term forecasting and ultra-short-term forecasting. The long-term and mid-term forecasting are mainly used for macro control, and their forecasting time arrange are from one year to ten years and from one month to twelve months respectively. The short-term forecasting which prediction time is from one day to seven days is used in generators macroeconomic control, power exchange plan and some other areas. Predicting the situation in next 24 hours is named as the ultra-short-term forecasting which is used for failure prediction, emergency treatment and frequency control. In general, the forecast accuracy is different for different prediction time. The longer is the time, the lower accurate is the prediction. As the unique power supplier in Huizhou (China), Huizhou Electric Power wants to know the solution to the problems: 1. Prediction of the total electrical consumption and the peak load of the city in 2006 based on the economy development and the feature of the city. 2. Monthly prediction of the consumption and peak load in 2006. 3. Daily prediction of the consumption and peak load from July 10th to 16th in 2006. 4. Prediction of the load every 15 minutes of July 10th. 5. Real-time forecasting which means to amend the existing load prediction for next 15 minute
    • …
    corecore